Saturday, 28 September 2013

Visual Web Ripper: Using External Input Data Sources

Sometimes it is necessary to use external data sources to provide parameters for the scraping process. For example, you have a database with a bunch of ASINs and you need to scrape all product information for each one of them. As far as Visual Web Ripper is concerned, an input data source can be used to provide a list of input values to a data extraction project. A data extraction project will be run once for each row of input values.

An input data source is normally used in one of these scenarios:

    To provide a list of input values for a web form
    To provide a list of start URLs
    To provide input values for Fixed Value elements
    To provide input values for scripts

Visual Web Ripper supports the following input data sources:

    SQL Server Database
    MySQL Database
    OleDB Database
    CSV File
    Script (A script can be used to provide data from almost any data source)

To see it in action you can download a sample project that uses an input CSV file with Amazon ASIN codes to generate Amazon start URLs and extract some product data. Place both the project file and the input CSV file in the default Visual Web Ripper project folder (My Documents\Visual Web Ripper\Projects).

For further information please look at the manual topic, explaining how to use an input data source to generate start URLs.


Source: http://extract-web-data.com/visual-web-ripper-using-external-input-data-sources/

Friday, 27 September 2013

Scraping Amazon.com with Screen Scraper

Let’s look how to use Screen Scraper for scraping Amazon products having a list of asins in external database.

Screen Scraper is designed to be interoperable with all sorts of databases and web-languages. There is even a data-manager that allows one to make a connection to a database (MySQL, Amazon RDS, MS SQL, MariaDB, PostgreSQL, etc), and then the scripting in screen-scraper is agnostic to the type of database.

Let’s go through a sample scrape project you can see it at work. I don’t know how well you know Screen Scraper, but I assume you have it installed, and a MySQL database you can use. You need to:

    Make sure screen-scraper is not running as workbench or server
    Put the Amazon (Scraping Session).sss file in the “screen-scraper enterprise edition/import” directory.
    Put the mysql-connector-java-5.1.22-bin.jar file in the “screen-scraper enterprise edition/lib/ext” directory.
    Create a MySQL database for the scrape to use, and import the amazon.sql file.
    Put the amazon.db.config file in the “screen-scraper enterprise edition/input” directory and edit it to contain proper settings to connect to your database.
    Start the screen scraper workbench

Since this is a very simple scrape, you just want to run it in the workbench (most of the time you want to run scrapes in server mode). Start the workbench, and you will see the Amazon scrape in there, and you can just click the “play” button.

Note that a breakpoint comes up for each item. It would be easy to save the scraped details to a database table or file if you want. Also see in the database the “id_status” changes as each item is scraped.

When the scrape is run, it looks in the database for products marked “not scraped”, so when you want to re-run the scrapes, you need to:

UPDATE asin
SET `id_status` = 0

Have a nice scraping! ))

P.S. We thank Jason Bellows from Ekiwi, LLC for such a great tutorial.


Source: http://extract-web-data.com/scraping-amazon-com-with-screen-scraper/

Thursday, 26 September 2013

Using External Input Data in Off-the-shelf Web Scrapers

There is a question I’ve wanted to shed some light upon for a long time already: “What if I need to scrape several URL’s based on data in some external database?“.

For example, recently one of our visitors asked a very good question (thanks, Ed):

    “I have a large list of amazon.com asin. I would like to scrape 10 or so fields for each asin. Is there any web scraping software available that can read each asin from a database and form the destination url to be scraped like http://www.amazon.com/gp/product/{asin} and scrape the data?”

This question impelled me to investigate this matter. I contacted several web scraper developers, and they kindly provided me with detailed answers that allowed me to bring the following summary to your attention:
Visual Web Ripper

An input data source can be used to provide a list of input values to a data extraction project. A data extraction project will be run once for each row of input values. You can find the additional information here.
Web Content Extractor

You can use the -at”filename” command line option to add new URLs from TXT or CSV file:

    WCExtractor.exe projectfile -at”filename” -s

projectfile: the file name of the project (*.wcepr) to open.
filename – the file name of the CSV or TXT file that contains URLs separated by newlines.
-s – starts the extraction process

You can find some options and examples here.
Mozenda

Since Mozenda is cloud-based, the external data needs to be loaded up into the user’s Mozenda account. That data can then be easily used as part of the data extracting process. You can construct URLs, search for strings that match your inputs, or carry through several data fields from an input collection and add data to it as part of your output. The easiest way to get input data from an external source is to use the API to populate data into a Mozenda collection (in the user’s account). You can also input data in the Mozenda web console by importing a .csv file or importing one through our agent building tool.

Once the data is loaded into the cloud, you simply initiate building a Mozenda web agent and refer to that Data list. By using the Load page action and the variable from the inputs, you can construct a URL like http://www.amazon.com/gp/product/%asin%.
Helium Scraper

Here is a video showing how to do this with Helium Scraper:


The video shows how to use the input data as URLs and as search terms. There are many other ways you could use this data, way too many to fit in a video. Also, if you know SQL, you could run a query to get the data directly from an external MS Access database like
SELECT * FROM [MyTable] IN "C:\MyDatabase.mdb"

Note that the database needs to be a “.mdb” file.
WebSundew Data Extractor
Basically this allows using input data from external data sources. This may be CSV, Excel file or a Database (MySQL, MSSQL, etc). Here you can see how to do this in the case of an external file, but you can do it with a database in a similar way (you just need to write an SQL script that returns the necessary data).
In addition to passing URLs from the external sources you can pass other input parameters as well (input fields, for example).
Screen Scraper

Screen Scraper is really designed to be interoperable with all sorts of databases. We have composed a separate article where you can find a tutorial and a sample project about scraping Amazon products based on a list of their ASINs.


Source: http://extract-web-data.com/using-external-input-data-in-off-the-shelf-web-scrapers/

Wednesday, 25 September 2013

How to scrape Yellow Pages with ScreenScraper Chrome Extension

Recently I was asked to help with the job of scraping company information from the Yellow Pages website using the ScreenScraper Chrome Extension. After working with this simple scraper, I decided to create a tutorial on how to use this Google Chrome Extension for scraping pages similar to this one. Hopefully, it will be useful to many of you.
1. Install the Chrome Extension

You can get the extension here. After installation you should see a small monitor icon in the top right corner of your Chrome browser.
2. Open the source page

Let’s open the page from which you want to scrape the company information:


3. Determine the parent element (row)

The first thing you need to do for the scraping is to determine which HTML element will be the parent element. A parent element is the smallest HTML element that contains all the information items you need to scrape (in our case they are Company Name, Company Address and Contact Phone).  To some extent a parent element defines a data row in the resulting table.

To determine it, open Google Chrome Developer Tools (by pressing Ctrl+Shift+I), click the magnifying class (at the bottom of the window) and select the parent element on the page. I selected this one:

As soon as you have selected it, look into the developer tools window and you will see the HTML code related to this element: - See more at:

As is seen from the highlighted HTML line, you can easily define a parent element by its class: listingInfoAndLogo.
5. Determine the information elements (columns)

After you have learned how to determine the parent element, it should be easy to specify the information elements that contain the information you want to scrape (they represent columns in the resultant table).

Just do this in the same way that you did it for the parent element -  by selecting it on the page:


As you can see, the company name is defined by businessName class.

6. Tune the ScreenScraper itself

After all the data elements you want to scrape are found, open the ScreenScraper by clicking the small monitor icon in the top-right corner of your browser. Then do the following:

    Enter the parent element class name (listingInfoAndLogo in our case) into the Selector field, preceding it with a dot (*see below for why)
    Click the Add Column button
    Enter a field’s name (any) into the Field text box
    Enter the information item class into the Selector text box, preceding it with a dot
    Repeat steps 2-4 for each information item element you want to be scraped


If the result is satisfactory you can download it in JSON or CSV format by pressing the corresponding button.

Source: http://extract-web-data.com/how-to-scrape-yellow-pages-with-screenscraper-chrome-extension/

Tuesday, 24 September 2013

What is Data Mining?

Data mining is the process in which there is analysis of data forming different angles and perspectives and summarizing the same data into the relevant information. This kind of information could be utilized to increase the revenue, cutting the costs or both.

Software is mainly used for analyzing data and also assists in accumulation of data for the different sources and categorize and summarize the given data into some useful form.

Though the data mining is new term, the software used for mining the data was previously used. With the constant upgradations of the software and the processing power, the market tools, data mining software has increased in its accuracy. Formerly, this data mining was widely used by the businessmen for the market research and the analysis. There were few companies that used the computers to examine through the column of the supermarket data.

The data mining is the technique of running the data through the sophisticated algorithms for discovering the meaningful correlations and patterns that would have otherwise remained hidden. It is very helpful, since it aids in understanding the techniques and methods of business and you can accordingly apply your own intelligence fitting in the current market trend. Even the future performances get enhanced by the predictive analysis.

Business Intelligence operations occur in the background. Users of the mining operation can just see the end result. The users are in apposition to get the results through the mails and can also go through the recommendation through web pages and emails.

The data mining process indicates the invention of trends and tactics. The moment you discover and understand the market trends, you have the knowledge of which article is sold more and which article is sold with the other one. This kind of tend has an enormous impact on business organization. In this manner, the business gets enhanced as the market gets analyzed in a perfect manner. Due to these correlations, the performance of business organization increases to a lot of extent.

Mining gives a chance or opportunity to enhance the future performance of the business organization. There is a common philosophical phrase that, 'he who does not learn from the history is destined to repeat the same'. Therefore, if these predictions are done with the help and assistance of the historical information (data), then you can get sufficient data for improvising the products of the business organization.

Mining enables the embedding of the recommendations in the applications. Simple summary statements and the proposals can be displayed within the operational applications. Data mining also needs powerful machines. The algorithms might be applied to a Java or a Dataset code for using the same. Data mining is very useful for knowing the trends and making future predictions based on the predictive analysis. It also helps in cost cutting and increase in the revenue of the business organization

This article is part of Expertstown. You can visit Experts Town's Business Intelligence Blog for more information.




Source: http://ezinearticles.com/?What-is-Data-Mining?&id=3816784

Monday, 23 September 2013

Data Entry Services by a Virtual Assistant

Data Entry is a basic requirement for any business and it may appear to be simple to supervise and handle, this engage a lot of procedures that require a proper handling. Enormous modifications have taken place in the field of data entry and because of this data processing work has become really easier then before. So if you are looking to make data entry services useful to maintain the information and data of your company, you need a skilled virtual assistant. These days it is almost impossible to say Data Entry Services are costly; however, the fact is this by outsourcing a data process to country like India will be a good option for an organization to find a quality services with cost-effective solutions. All you need to choose you will hire a VA for the job you wanted to complete within a particular time frame, with quality and a cost-effective solution or to hire an in house employee for which you have to pay employee benefits such as sick pay, employee insurance, vacation pay, worker's compensation and much more. You are the best person to decide, you want to outsource the job to a virtual assistant who only charge for the job they work for after all this is your business.

Data Entry is one of the important features for your business and as a result you must make sure that this is dealt in a right direction. Outsourcing Data Entry service to a virtual assistant is not only a part of a business. With the enormous flow on the ground of Information Technology Data Conversion service is evenly significant. Data Conversion is the process to renovate the data in which data is converted from file source to another file type such as extracting the data from PDF file to excel spreadsheet and business world need these conversion for efficiency in performance. Virtual Assistant's are skilled enough to convert almost any file type to another for a business owner to access the data in any format.

By outsourcing your data entry jobs to a virtual assistant in India has been found very cost-effective solutions with quality of the job. Outsourcing Data Entry Services is one of the rise these days and the reason behind this is business owners has enjoyed the success of outsourcing the job to a virtual assistant. The major benefit of getting data entry services complete by a virtual assistant in India is they work really cheap and the work done by them is of top quality job. So if the data entry services provided by a virtual assistant are cheap and of top quality there is completely no possibility why someone would not take the benefits of a VA services.

Amit Ganotra is a skilled virtual assistant providing services like Data Entry, Data Processing, Data Conversion, Data Mining, Data cleaning, OCR Cleanup, Article Submission, Directory Submissions, Web Development. For more information about the services we provide please visit the website.




Source: http://ezinearticles.com/?Data-Entry-Services-by-a-Virtual-Assistant&id=1665926

Friday, 20 September 2013

Recover Data With Secure Data Recovery Services

Failure of hard disk drive, server, or RAID array can lead to loss of data stored in the computer and also stop ongoing work. Both these aspects can be extremely detrimental to the interests of the computer user, whether an individual or a business entity.

It is essential that at such a stage data recovery process is set in motion immediately to maximize the possibility of recovering the entire lost data and to make the computer operational. The first step would be to contact a reputable online services provider such as Secure Data Recovery Services. They have a network of it's locations throughout the United States.

Essential Attributes Of Data Recovery Services

If data recovery is of prime importance to you, choose the online recovery services that specialize in all types of them. These include hard drive, RAID recovery, Mac, SQL, and Tape recovery. You must ensure that the data one selected by you should be able to extract vital and critical data from any interface hard disk drive. For example, IDE, EIDE, SATA "Serial ATA," PATA "Parallel ATA," SCSI, SAS, and Fiber Channel. The data one should also be able to recover data from single drive, multiple-drive, and RAID array setups. They should also be able to service all major brand drives.

The most important attribute of Secure Data Recovery Services is that they have qualified, experienced, and professional technicians. They should be able to diagnose the cause of the failure and set it right. These technicians are trained to work continuously till the time a solution to your problem is found. The service also has all modern tools and instruments. The work is carried out in Clean Rooms so that no dust particle can enter the hard drive. All these services are provided to the full satisfaction of the clients and at competitive prices.

Loss of data can be a nightmare. Secure Data Recovery Services have the technical know how, experienced and qualified technicians, necessary tools, Clean Room, and the will to complete the recovery work as quickly as possible.




Source: http://ezinearticles.com/?Recover-Data-With-Secure-Data-Recovery-Services&id=5301563

Thursday, 19 September 2013

What You Need to Know About Popular Software - Data Mining Software

Simply put, data mining is the process of extracting hidden patterns from the organization's database. Over the years it has become a more and more important tool for adding value to the company's databases. Applications include business, medicine, science and engineering, and combating terrorism. This technique actually involves two very different processes, knowledge discovery and prediction. Knowledge discovery provides users with explicit information that in a sense is sitting in the database but has not been exposed. Prediction is an attempt to read into the future.

Data mining relies on the use of real-world data. To understand how this technology works we need first to review some basic concepts. Data are any facts whether numeric or textual that can be processed by a computer. The categories include operational, non-operational, and metadata. Operational or transactional elements include accounting, cost, inventory, and sales facts and figures. Non-operational elements include forecasts and information describing competitors and the industry as a whole. Metadata describes the data itself; it is required to set up and run the databases.

Data mining commonly performs four interrelated tasks: association rule learning, classification, clustering, and regression. Let's examine each in turn. Association rule learning, also known as market basket analysis, searches for relationships between variables. A classic example is a supermarket determining which products customers buy together. Customers who buy onions and potatoes often buy beef. Classification arranges data into predefined groups. This technology can do so in a sophisticated manner. In a related technique known as clustering the groups are not predefined. Regression involves data modeling.

It has been alleged that data mining has been used both in the United States and elsewhere to combat terrorism. As always in such cases, those who know don't say, and those who say don't know. One may surmise that these anti-terrorist applications look for unusual patterns. Many credit card holders have been contacted when their spending patterns changed substantially.

Data mining has become an important feature in many customer relationship management applications. For example, this technology enables companies to focus their marketing efforts on likely customers rather than trying to sell to everyone out there. Human resources applications help companies recruit and manage employees. We have already mentioned market basket analysis. Strategic enterprise management applications help a company transform corporate targets and goals into operational decisions such as hiring and factory scheduling.

Given its great power, many people are concerned with the human rights and privacy issues around data mining. Sophisticated applications could work its way around privacy safeguards. As the technology becomes more widespread and less expensive, these issues may become more urgent. As data is summarized the wrong conclusions can be drawn. This problem not only affects human rights but also the company's bottom line.

Levi Reiss has authored or co-authored ten books on computers and the Internet. He teaches Linux and Windows operating systems plus other computer courses at an Ontario French-language community college. Visit his new website [http://www.mysql4windows.com] which teaches you how to download and run MySQL on Windows computers, even if they are "obsolete." For a break from computers check out his global wine website at http://www.theworldwidewine.com with his new weekly column reviewing $10 wines.



Source: http://ezinearticles.com/?What-You-Need-to-Know-About-Popular-Software---Data-Mining-Software&id=1920655

Tuesday, 17 September 2013

Offline Data Mining Strikes Gold

You'll often hear the term "striking gold" associated with data mining. Just as gold miners received information about a patch of land and went in with their shovels hoping to strike it rich, data mining deals in relatively the same way. The process is being popular for businesses of various types, and if done right it can be an extremely low-risk, high-reward process.

Basically, data mining is the process of discovering and analyzing data from different perspectives. The process of getting information and facts from usable sources. Once data is compiled and analyzed, it is then summarized into useful information for a business. The result, hopefully, will help to cut overhead costs, increase revenue and be an all-around tool for business improvement. It can be used to improve and generate business strategies that will help you and your business as well.

In a sense, you can think of data mining like election polling. With a strong sample group of voters, proper analysis can paint a picture of who's going to win the election. If you'll notice, however, there's a catch in this process. A person (statistic) would have to be present within a field in order to give a result i.e. a voter would need to be polled instead of a random person.

Anything quantifiable is data. It is a factual information used as a basis for reasoning, discussion, or calculation. It is most basically anything and everything under the sun. You can deal with facts, numbers, text, people, and even statistics on shopping habits. Just about a bit of everything.

Businesses are pressing the limits of what data is, using operational data like cost, inventory, payroll, accounting and sales; non-operational data like forecast data, macro economic data and industry sales; and even meta-data, which is, essentially, data about the collected data.

Any collected information can then be quantified to knowledge, and trends can be discovered and predicted. The goal is to mine the data, analyze it and come up with hard data about consumer buying behaviors, employee behavior, geographical significance, and a number of other usable statistics to help your business grow.

Not every business is employing this process on the same scale. While some do collect the data in various forms and use it to their advantage, only the companies serious about data mining actually invest in the processing power and build data warehouses where trends are stored and all data is centralized.




Source: http://ezinearticles.com/?Offline-Data-Mining-Strikes-Gold&id=6266733

Monday, 16 September 2013

Why Web Scraping Software Won't Help

How to get continuous stream of data from these websites without getting stopped? Scraping logic depends upon the HTML sent out by the web server on page requests, if anything changes in the output, its most likely going to break your scraper setup.

If you are running a website which depends upon getting continuous updated data from some websites, it can be dangerous to reply on just a software.

Some of the challenges you should think:

1. Web masters keep changing their websites to be more user friendly and look better, in turn it breaks the delicate scraper data extraction logic.

2. IP address block: If you continuously keep scraping from a website from your office, your IP is going to get blocked by the "security guards" one day.

3. Websites are increasingly using better ways to send data, Ajax, client side web service calls etc. Making it increasingly harder to scrap data off from these websites. Unless you are an expert in programing, you will not be able to get the data out.

4. Think of a situation, where your newly setup website has started flourishing and suddenly the dream data feed that you used to get stops. In today's society of abundant resources, your users will switch to a service which is still serving them fresh data.

Getting over these challenges

Let experts help you, people who have been in this business for a long time and have been serving clients day in and out. They run their own servers which are there just to do one job, extract data. IP blocking is no issue for them as they can switch servers in minutes and get the scraping exercise back on track. Try this service and you will see what I mean here.




Source: http://ezinearticles.com/?Why-Web-Scraping-Software-Wont-Help&id=4550594

Saturday, 14 September 2013

RFM - A Precursor to Data Mining

RFM in Action

RFM was initially utilized by marketers in the B-2-C space - specifically in industries like Cataloging, Insurance, Retail Banking, Telecommunications and others. There are a number of scoring approaches that can be used with RFM. We'll take a look at three:

RFM - Basic Ranking
RFM - Within Parent Cell Ranking
RFM - Weighted Cell Ranking

Each approach has experienced proponents that argue one over the other. The point is to start somewhere and experiment to find the one that works best for your company and your customer base. Let's look at a few examples.

RFM - Basic Ranking

This approach involves scoring customers based on each RFM factor separately. It begins with sorting your customers based on Recency, i.e., the number of days or months since their last purchase. Once sorted in ascending order (most recent purchasers at the top), the customers are then split into quintiles, or five equal groups. The customers in the top quintile represent the 20% of your customers that most recently purchased from you.

This process is then undertaken for Frequency and Monetary as well. Each customer is in one of the five cells for R, F, and M

Experience tells us that the best prospects for an upcoming campaign are those customers that are in Quintile 5 for each factor - those customers that have purchased most recently, most frequently and have spent the most money. In fact, a common approach to creating an aggregated score is to concatenate the individual RFM scores together resulting in 125 cells (5x5x5).

A customer's score can range from 555 being the highest, to 111 being the lowest.

RFM - Within Parent Cell Ranking

This approach is advocated by Arthur Middleton Hughes - one of the biggest proponents of RFM analysis. It begins like the one above, i.e., all customer are initially grouped into 5 cells based on Recency. The next step takes customers in a given Recency cell - say cell number 5, and then ranks those customers based on Frequency. Then customers in the 55 (RF) cell are ranked by monetary value.

RFM - Weighted Ranking

Weightings used by RFM practitioners vary. For example some advocate adding the RFM score together - thus giving equal weight to each factor. Consequently, scores can range from 15 (5+5+5) to 3 (1+1+1). Another weighting arrangement often used is, 3xR + 2xF + 1xM. In this case, scores can range from 30 to 3.

So which to use? In reality, there are many other permutations of approaches that are being used today. Best-practice marketing analytics requires a fine mix of mathematical and statistical science, creativity and experimentation. Bottom line, test multiple scoring methods to see which works best for your unique customer base.

Establishing a Score Threshold

After a test or production campaign, you will find that some of the cells were profitable while some were not. Let's turn to a case study to see how you can establish a threshold that will help maximize your profitability. This study comes from Professor Charlotte Mason of the Kenan-Flagler Business School and utilizes a real-life marketing study performed by The BookBinders Book Club (Source:Recency, Frequency and Monetary (RFM) Analysis, Professor Charlotte Mason, Kenan-Flagler Business School, University of North Carolina, 2003).

BookBinders is a specialty book seller that utilizes multiple marketing channels. BookBinders traditionally did mass marketing and wanted to test the power of RFM. To do so, they initially did a random mailing to 50,000 customers. The customers were mailed an offer to purchase The Art History of Florence. Response data was captured and a "post-RFM" analysis was completed. This "post analysis" was done by freezing the files of the 50,000 test customers prior to the actual test offer. Thus, the impact of this test campaign did not effect the analysis by coding many (the actual buyers) of the 50,000 test subjects as the most recent purchasers. The results firmly support the use of RFM as a highly effective segmentation approach.

Purchased the book = yes; months since last purchase = 8.61; total # purchases = 5.22; dollars spent = 234.30
Purchased the book = no; Months since last purchase = 12.73; total # purchases = 3.76; dollars spent = 205.74

Customers that purchased the book were more recent purchasers, more frequent purchasers and had spent the most with BookBinders.

The response rate for the top decile (18%) was twice the response rate associated with the 5th decile (9%).

Results from this test were then used by BookBinders to identify which of their remaining customers should receive the same mailing. BookBinders used a breakeven response rate calculation to determine the appropriate RFM cells to mail.

The following cost information was used as input:

Cost per Mail-piece $0.50

Selling Price $18.00

BookBinders Book Cost $9.00

Shipping Costs $3.00

Breakeven is achieved when the cost of the mailing is equal to the net profit from a sale. In this case:

Breakeven = (cost to mail the offer/net profit from a single sale)

= $0.50/($18-9-3)

= ($0.50/6)

= 8.3% = Breakeven Response rate

So, according to the test offer, profit can be obtained by mailing to cells that exhibited a response rate of greater than 8.3%

RFM dramatically improved profitability by capturing 71% of buyers (3,214/4,522) while mailing only 46% of their customers (22,731/50,000). And the return on marketing expenditures using RFM was more than eight times (69.7/8.5) that of a mass mailing.

Number of Cells and Cell Size Considerations

As previously mentioned, RFM was initially utilized by companies that operated in the B-to-C marketplace and generally possessed a very large number of customers. The idea of generating 125 cells using quintiles for R, F and M has been a very good practice as an initial modeling effort. But what if you are a B-to-B marketer with relatively fewer customers? Or, what if you are a B-to-C marketer with an extremely large file with millions of customers? The answer is to use the same approach that is used in data mining -- be flexible and experiment.

Establishing a minimum test cell size is a good place to start. Arthur Hughes recommends the following formula:

Test Cell Size = 4 / Breakeven Response Rate.

The Breakeven Response Rate was addressed above in the BookBinders case study. The number "4" is a number that Hughes has found works successfully based on many studies he has performed. BookBinders Breakeven Response Rate was 8.3%. Using the above formula, you would need a minimum of 48 customers in each cell (4/0.083). BookBinders actually had 400 customers per cell, so they had more than adequate comfort in the significance of their test. In reality, BookBinders could have created as many as 1,041 cells if they were comfortable using the minimum of 48 per cell. As an example, they could have used deciles as opposed to quintiles and established 1,000 cells (10 x 10 x 10). The more cells the finer the analysis, but of course the law of diminishing returns will arise.

Other weighting considerations can be used for small files. If your Breakeven Response Rate is 3%, your minimum cell size would be 133 customers (4/0.03). Therefore, if you have 12,000 customers you could have about 90 cells (12,000/133). As such, a 5 x 5 x 4 (100 cells) or a 5 x 4 x 4 (80 cells) approach may be appropriate.

Conclusions

RFM, BI and data mining are all part of an evolutionary path that is common to many marketing organizations. While RFM has been practiced for over 40 years, it still holds great value for many organizations. Its merits include:

- Simplicity - easy to understand and implement

- Relatively low cost

- Proven ROI

- The demand on data requirements are relatively low in terms of variables required and the number of records

- Once utilized, it sets up a broader foundation (from an infrastructure and business case perspective) to undertake more sophisticated data mining efforts

RFM's challenges include:

- Contact fatigue can be a problem for the higher scoring customers. A high level cross-campaign communication strategy can help prevent this.

- Your lowest scoring customers may never hear from you. Again, a cross-campaign communications plan should ensure that all of your customers are communicated with periodically to ensure low scoring customers are given the opportunity to meet their potential. Also, data mining and the prediction of customer lifetime value can help address this shortcoming.

- RFM includes only three variables. Data mining typically finds RFM-based variables to be quite important in response models. But there are additional variables that data mining typically use (e.g., detailed transaction, demographic and firmographic) that help produce improved results. Moreover, data mining techniques can also increase response rates via the development of richer segment/cell profiles that can be used to vary offer content and incentives.

As stated before, successful marketing efforts require analytics and experimentation. RFM has proven itself as an effective approach to predicting response and improving profitability. It can be an important stage in your company's evolution in marketing analytics.




Source: http://ezinearticles.com/?RFM---A-Precursor-to-Data-Mining&id=1962283

Friday, 13 September 2013

Data Discovery vs. Data Extraction

Looking at screen-scraping at a simplified level, there are two primary stages involved: data discovery and data extraction. Data discovery deals with navigating a web site to arrive at the pages containing the data you want, and data extraction deals with actually pulling that data off of those pages. Generally when people think of screen-scraping they focus on the data extraction portion of the process, but my experience has been that data discovery is often the more difficult of the two.

The data discovery step in screen-scraping might be as simple as requesting a single URL. For example, you might just need to go to the home page of a site and extract out the latest news headlines. On the other side of the spectrum, data discovery may involve logging in to a web site, traversing a series of pages in order to get needed cookies, submitting a POST request on a search form, traversing through search results pages, and finally following all of the "details" links within the search results pages to get to the data you're actually after. In cases of the former a simple Perl script would often work just fine. For anything much more complex than that, though, a commercial screen-scraping tool can be an incredible time-saver. Especially for sites that require logging in, writing code to handle screen-scraping can be a nightmare when it comes to dealing with cookies and such.

In the data extraction phase you've already arrived at the page containing the data you're interested in, and you now need to pull it out of the HTML. Traditionally this has typically involved creating a series of regular expressions that match the pieces of the page you want (e.g., URL's and link titles). Regular expressions can be a bit complex to deal with, so most screen-scraping applications will hide these details from you, even though they may use regular expressions behind the scenes.

As an addendum, I should probably mention a third phase that is often ignored, and that is, what do you do with the data once you've extracted it? Common examples include writing the data to a CSV or XML file, or saving it to a database. In the case of a live web site you might even scrape the information and display it in the user's web browser in real-time. When shopping around for a screen-scraping tool you should make sure that it gives you the flexibility you need to work with the data once it's been extracted.




Source: http://ezinearticles.com/?Data-Discovery-vs.-Data-Extraction&id=165396

Thursday, 12 September 2013

Effectiveness of Web Data Mining Through Web Research

Web data mining is systematic approach to keyword based and hyperlink based web research for gaining business intelligence. It requires analytical skills to understand hyperlink structure of given website. Hyperlinks possess enormous amount of hidden human annotations that can help automatically understand the authority. If the webmaster provides a hyperlink pointing to another website or web page, this action is perceived as an endorsement to that webpage. Search engines highly focus on such endorsements to define the importance of the page and place them higher in organic search results.

However every hyperlink does not refer to the endorsement since the webmaster may have used it for other purposes, such as navigation or to render paid advertisements. It is important to note that authoritative pages rarely provide informative descriptions. For an instant, Google's homepage may not provide explicit self-description as "Web search engine."

These features of hyperlink systems have forced researchers to evaluate another important webpage category called hubs. A hub is a unique, informative webpage that offers collections of links to authorities. It may have only a few links pointing to other web pages but it links to a collection of prominent sites on a single topic. A hub directly awards authority status on sites that focus on a single topic. Typically, a quality hub points to many quality authorities, and, conversely, a web page that many such hubs link to can be deemed as a superior authority.

Such approach of identifying authoritative pages has resulted in the development of various popularity algorithms such as PageRank. Google uses PageRank algorithm to define authority of each webpage for a relevant search query. By analyzing hyperlink structures and web page content, these search engines can render better-quality search results than term-index engines such as Ask and topic directories such as DMOZ.




Source: http://ezinearticles.com/?Effectiveness-of-Web-Data-Mining-Through-Web-Research&id=5094403

Wednesday, 11 September 2013

Healthcare Marketing Series - Data Mining - The 21st Century Marketing Gold Rush

There is gold in them there hills! Well there is gold right within a few blocks of your office. Mining for patients, not unlike mining for gold or drilling for oil requires either great luck or great research.

It's all about the odds.

It's true that like old Jed from the Beverly Hillbillies, you might just take a shot and strike oil. But more likely you might drill a dry hole or dig a mine and find dirt not diamonds. Without research you might be a mere 2 feet from pay dirt, but drilling or mining in just the wrong spot.

Now oil companies and gold mining companies spend millions, if not, billions of dollars studying where and how to effectively find the "mother load". If market research is good enough for the big boys, it should be good enough for the healthcare provider. Remember as a health care professional you probably don't have the extras millions laying around to squander on trial and error marketing.

If you did there would be little need for you to market to find new patients to help.

In previous articles in the Health Care Marketing Series we talked about developing a marketing strategy, using metrics to measure the performance of your marketing execution, developing effective marketing warheads based on your marketing strategy, evaluating the most efficient ways to deliver those warheads, your marketing missile systems, and tying several marketing methods together into a marketing MIRV.

If you have been following along with our articles and starting to integrate the concepts detailed in them, by now you should have an excellent marketing infrastructure. Ready to launch laser guided marketing missiles tipped with nuclear marketing MIRVs. The better you have done your research, the more detailed your marketing strategy, the more effective and efficient your delivery systems, the bigger bang you'll receive from your marketing campaign. And ultimately the more lives you will help to change of patients that truly can benefit from your skills and talents as a doctor.

Sounds like you're ready for healthcare marketing shock and awe.

Everything is ready to launch, this is great, press the button and fire away!

Ah, but wait just a minute, General. What is the target? Where are they? What are the aiming coordinates?

The target? Why of course all those sick people out there.

Where are they? Well of course, out there!

The coordinates? Man just press the button, carpet bomb man. Carpet bomb!

This scenario is designed to show you how quickly the wheels can come off even the best intended marketing war machine. It brings us back full circle. We are right back to our original article on marketing strategy.

But this time we are going to introduce the concept of data mining. If you remember, our article on marketing strategy talked about doing research. We talked about research as the true cornerstone of all marketing efforts.

What is the target, General?

Answering this question is a little difficult and the truth is each healthcare provider needs to determine his or her high value target. And more importantly needs to know how to determine his or her high value targets.

Let's go back to our launch scenario to illustrate this point. Let's continue with our military analogy. Let's say we have several aircraft carriers, a few destroyers and a fleet of rowboats, making up our marketing battlefield.

As we have discussed previously, waging a marketing war, like any war, consumes resources. So do we want to launch our nuclear marketing MIRVs, the most valuable resources in our arsenal, and target the fleet of rowboats?

Or would it be wiser to target those aircraft carriers?

Well the obvious answer is "get those carriers".

But here is where things get a little tricky. One man's aircraft carrier is another man's rowboat.

You have to data mine your practice to determine which targets are high value targets.

What goes into that data mining process? Well first and foremost, what conditions do you 1.like to treat, 2. have a proven track record of treating and 3. obtain a reasonable reimbursement for treating.

In my own practice, I typically do not like or enjoy treating shoulder problems. I don't know if I don't like treating shoulders because I haven't had great results with them or if I haven't had great results, because I don't like treating them. Needless to say my reimbursement for treating shoulder cases is relatively low.

So do I really want to carpet bomb my marketing terrain and come up with 10 new cases of rotator cuff tears? These cases, for more than one reason, are my rowboats.

On the contrary, I like to treat neurological conditions like chronic pain; Neuropathy patients, Spinal Stenosis patients, Tinnitus patients, patients with Parkinson's Disease and Multiple Sclerosis patients. I've had results with these types of cases that have been good enough to publish. Because they are complex and difficult cases, I obtain a better than average reimbursement for my efforts. These cases are my aircraft carriers. If my marketing campaign brings me ten cases with these types of problems, chances are that the patient will obtain some great relief, I will find working with them an intellectual and stimulating challenge and my marketing efforts will bring me a handsome return on investment.

So the first lesson of data mining is to identify your aircraft carriers. They must be "your" aircraft carriers. You must have a good personal track record of helping these types of patients. You should enjoy treating these types of cases. And you should be rewarded for your time and expertise.

That's the first step in the process. Identifying your high value targets. The next step is THE most important aspect of healthcare marketing. As I discussed above, I enjoy working with complex neurological cases. But how many of these types of patients exist in my marketing terrain and are they looking for the type of help I can offer?

Being able to accurately answer these important questions is the single most valuable information I can extract using data mining.

It doesn't matter if I like treating these cases. It doesn't matter if I make a good living treating these cases. It doesn't matter if my success in treating these cases has made the local news. What matters is 1. do these types of cases exist in my neighborhood and 2. are they looking for the help I can provide to them?

You absolutely positively need to know who is looking for what in your marketing terrain and if what people are clamoring for is what you have to offer.

This knowledge is the most powerful tool in your marketing arsenal. It's your secret weapon. It is the foundation of your marketing strategy. It is so important that you should consider moving your office if the results of your data mining don't reveal an ocean full of aircraft carriers in your marketing terrain for you to target.

If your market research does not reveal an abundance of aircraft carriers on your horizon, you need to either 1. move to a new battlefield, 2. re-target your efforts towards the destroyers in your market or 3. try to create a market.

Let's look at your last choice. Trying to create a market. Unless you are Coke or Pepsi, your ability to create a market as a health care provider is extremely limited. To continue on with our analogy, to create a market requires converting rowboats into, at least, destroyers, but better yet aircraft carriers.

What would it cost if you took a rowboat to a ship yard and told them to rebuild it as an aircraft carrier?

This is what you face if you try to create a market where none exists. Unless you have a personality flaw and thrive on selling ice to Eskimos, creating a market is not a rewarding proposition.

So scratch this option off the table right now.

What about re-targeting your campaign towards destroyers? That's a viable option. It's a good option. It's probably your best option. It's an option that will likely give you your best return on investment. It is recommended that you focus your arsenal on the destroyers while at the same time never passing on an opportunity to sink an aircraft carrier.

So what is the secret? How do you data mine for aircraft carriers?

Well its quite simple in the internet age. Just use the services of a market research firm. I like http://www.marketresearch.com They will do the data mining for you.

They can provide market intelligence that will tell you not only what the health care aircraft carriers are, but also where they are.

With this information, you will have a competitive advantage in your marketing battlefield. You can segment, and target high value targets in your area while your competitors squander their marketing resources on rowboats. Or even worse carpet bomb and hit ocean water, not valuable targets.

Your marketing strategy should be highly targeted. Your marketing resources should be well spent. As we discussed in our very first article on true "Marketing Strategy" you should enter the battle against your competition already knowing your have won.

What gives you this dominant position in the market, is knowing ahead-of-time, who is looking for what in your marketing terrain. In other words, not trying to create a market, but rather identifying existing market niches, specifically targeting them with laser guided precision and having headlines and ad copy based on your strength versus the weakness of your competition within that niche.

This research-based marketing strategy is sure to cause a big bang with potential patients.

And leave your competition trying to sell ice to Eskimos.

I hope you see how important market research is and why it is a good thing to spend some of your marketing budget on research before you waste your marketing resources on poorly targeted low value or no-value targets. This article was intended to give you a glimpse at how to use data mining and consumer demographics information as a foundation for the development of a scientific research-based marketing strategy. This article shows you how to use existing resources to give your marketing efforts (and you) a competitive advantage.



Source: http://ezinearticles.com/?Healthcare-Marketing-Series---Data-Mining---The--21st-Century-Marketing-Gold-Rush&id=1486283

Monday, 9 September 2013

Online Data Entry and Data Mining Services

Data entry job involves transcribing a particular type of data into some other form. It can be either online or offline. The input data may include printed documents like Application forms, survey forms, registration forms, handwritten documents etc.

Data entry process is an inevitable part of the job to any organization. One way or other each organization demands data entry. Data entry skills vary depends upon the nature of the job requirement, in some cases data to be entered from a hard copy formats and in some other cases data to be entered directly into a web portal. Online data entry job generally requires the data to be entered in to any online data base.

For a super market, data associate might be required to enter the goods which have sold in a particular day and the new goods received in a particular day to maintain the stock well in order. Also, by doing this the concerned authorities will get an idea about the sale particulars of each commodity as they requires. In another example, an office the account executive might be required to input the day to day expenses in to the online accounting database in order to keep the account well in order.

The aim of the data mining process is to collect the information from reliable online sources as per the requirement of the customer and convert it to a structured format for the further use. The major source of data mining is any of the internet search engine like Google, Yahoo, Bing, AOL, MSN etc. Many search engines such as Google and Bing provide customized results based on the user's activity history. Based on our keyword search, the search engine lists the details of the websites from where we can gather the details as per our requirement.

Collect the data from the online sources such as Company Name, Contact Person, Profile of the Company, Contact Phone Number of Email ID Etc. are doing for the marketing activities. Once the data is gathered from the online sources into a structured format, the marketing authorities will start their marketing promotions by calling or emailing the concerned persons, which may result to create a new customer. So basically data mining is playing a vital role in today's business expansions. By outsourcing the data entry and its related works, you can save the cost that would be incurred in setting up the necessary infrastructure and employee cost.

E-dataentry is an offshore India based company providing superior quality data mining services to clients across the globe with high level of accuracy at reasonable price.



Source: http://ezinearticles.com/?Online-Data-Entry-and-Data-Mining-Services&id=7713395

Saturday, 7 September 2013

Customer Relationship Management (CRM) Using Data Mining Services

In today's globalized marketplace Customer relationship management (CRM) is deemed as crucial business activity to compete efficiently and outdone the competition. CRM strategies heavily depend on how effectively you can use the customer information in meeting their needs and expectations which in turn leads to more profit.

Some basic questions include - what are their specific needs, how satisfied they are with your product or services, is there a scope of improvement in existing product/service and so on. For better CRM strategy you need a predictive data mining models fueled by right data and analysis. Let me give you a basic idea on how you can use Data mining for your CRM objective.

Basic process of CRM data mining includes:
1. Define business goal
2. Construct marketing database
3. Analyze data
4. Visualize a model
5. Explore model
6. Set up model & start monitoring

Let me explain last three steps in detail.

Visualize a Model:
Building a predictive data model is an iterative process. You may require 2-3 models in order to discover the one that best suit your business problem. In searching a right data model you may need to go back, do some changes or even change your problem statement.

In building a model you start with customer data for which the result is already known. For example, you may have to do a test mailing to discover how many people will reply to your mail. You then divide this information into two groups. On the first group, you predict your desired model and apply this on remaining data. Once you finish the estimation and testing process you are left with a model that best suits your business idea.

Explore Model:
Accuracy is the key in evaluating your outcomes. For example, predictive models acquired through data mining may be clubbed with the insights of domain experts and can be used in a large project that can serve to various kinds of people. The way data mining is used in an application is decided by the nature of customer interaction. In most cases either customer contacts you or you contact them.

Set up Model & Start Monitoring:
To analyze customer interactions you need to consider factors like who originated the contact, whether it was direct or social media campaign, brand awareness of your company, etc. Then you select a sample of users to be contacted by applying the model to your existing customer database. In case of advertising campaigns you match the profiles of potential users discovered by your model to the profile of the users your campaign will reach.

In either case, if the input data involves income, age and gender demography, but the model demands gender-to-income or age-to-income ratio then you need to transform your existing database accordingly.



Source: http://ezinearticles.com/?Customer-Relationship-Management-%28CRM%29-Using-Data-Mining-Services&id=4641198

Friday, 6 September 2013

Data Mining - Critical for Businesses to Tap the Unexplored Market

Knowledge discovery in databases (KDD) is an emerging field and is increasingly gaining importance in today's business. The knowledge discovery process, however, is vast, involving understanding of the business and its requirements, data selection, processing, mining and evaluation or interpretation; it does not have any pre-defined set of rules to go about solving a problem. Among the other stages, the data mining process holds high importance as the task involves identification of new patterns that have not been detected earlier from the dataset. This is relatively a broad concept involving web mining, text mining, online mining etc.

What Data Mining is and what it is not?

The data mining is the process of extracting information, which has been collected, analyzed and prepared, from the dataset and identifying new patterns from that information. At this juncture, it is also important to understand what it is not. The concept is often misunderstood for knowledge gathering, processing, analysis and interpretation/ inference derivation. While these processes are absolutely not data mining, they are very much necessary for its successful implementation.

The 'First-mover Advantage'

One of the major goals of the data mining process is to identify an unknown or rather unexplored segment that had always existed in the business or industry, but was overlooked. The process, when done meticulously using appropriate techniques, could even make way for niche segments providing companies the first-mover advantage. In any industry, the first-mover would bag the maximum benefits and exploit resources besides setting standards for other players to follow. The whole process is thus considered to be a worthy approach to identify unknown segments.

The online knowledge collection and research is the concept involving many complications and, therefore, outsourcing the data mining services often proves viable for large companies that cannot devote time for the task. Outsourcing the web mining services or text mining services would save an organization's productive time which would otherwise be spent in researching.

The data mining algorithms and challenges

Every data mining task follows certain algorithms using statistical methods, cluster analysis or decision tree techniques. However, there is no single universally accepted technique that can be adopted for all. Rather, the process completely depends on the nature of the business, industry and its requirements. Thus, appropriate methods have to be chosen depending upon the business operations.

The whole process is a subset of knowledge discovery process and as such involves different challenges. Analysis and preparation of dataset is very crucial as the well-researched material could assist in extracting only the relevant yet unidentified information useful for the business. Hence, the analysis of the gathered material and preparation of dataset, which also considers industrial standards during the process, would consume more time and labor. Investment is another major challenge in the process as it involves huge cost on deploying professionals with adequate domain knowledge plus knowledge on statistical and technological aspects.

The importance of maintaining a comprehensive database prompted the need for data mining which, in turn, paved way for niche concepts. Though the concept has been present for years now, companies faced with ever growing competition have realized its importance only in the recent years. Besides being relevant, the dataset from where the information is actually extracted also has to be sufficient enough so as to pull out and identify a new dimension. Yet, a standardized approach would result in better understanding and implementation of the newly identified patterns.



Source: http://ezinearticles.com/?Data-Mining---Critical-for-Businesses-to-Tap-the-Unexplored-Market&id=6745886

Thursday, 5 September 2013

How Can We Ensure the Accuracy of Data Mining - While Anonymizing the Data?

Okay so, the topic of this question is meaningful and was recently asked in a government publication on Internet Privacy, Smart Phone Personal Data, and Social Online Network Security Features. And indeed, it is a good question, in that we need the bulk raw data for many things such as; planning for IT backbone infrastructure, allotting communication frequencies, tracking flu pandemics, chasing cancer clusters, and for national security, etc, on-and-on, this data is very important.

Still, the question remains; "How Can We Ensure the Accuracy of Data Mining - While Anonymizing the Data?" Well, if you don't collect any data in the first place, you know what you've collected is accurate right? No data collected = No errors! But, that's not exactly what everyone has in mind of course. Now then if you don't have sources for the data points, and if all the data is a anonymized in advance, due to the use of screen names in social networks, then none of the accuracy of any of the data can be taken as truthful.

Okay, but that doesn't mean some of the data isn't correct right? And if you know the percentage of data you cannot trust, you can get better results. How about an example, during the campaign of Barak Obama there were numerous polls in the media, of course, many of the online polls showed a larger percentage, land-slide-like, which never materialized in the actual election; why? Simple, there were folks gaming the system, and because the online crowd, younger group participating was in greater abundance.

Back to the topic; perhaps what's needed is for someone less qualified as a trusted source with their information could be sidelined and identified as a question mark and within or adding to the margin of error. And, if it appears to be fake, a number next to that piece of data, and that identification can then be deleted, when doing the data mining.

Although, perhaps a subsystem could allow for tracing and tracking, but only if it was at the national security level, which could take the information all the way down to the individual ISP and actual user identification. And if data was found to be false, it could merely be red flagged, as unreliable.

The reality is you can't trust sources online, or any of the information that you see online, just like you cannot trust word-for-word the information in the newspapers, or the fact that 95% of all intelligence gathered is junk, the trick is to sift through and find the 5% that is reality based, and realize that even the misinformation, often has clues.

Thus, if the questionable data is flagged prior to anonymizing the data, then you can increase your margin for error without ever having the actual identification of any one-piece of data in the whole bulk of the database or data mine. Margins for error are often cut short, to purport better accuracy, usually to the detriment of the information or the conclusions, solutions, or decisions made from that data.

And then there is the fudge factor, when you are collecting data to prove yourself right? Okay, let's talk about that shall we? You really can't trust data as unbiased if the dissemination, collection, processing, and accounting was done by a human being. Likewise, we also know we cannot trust government data, or projections.

Consider if you will the problems with trusting the OMB numbers and economic data on the financial bill, or the cost of the ObamaCare healthcare bill. Also other economic data has been known to be false, and even the bank stress tests in China, the EU, and the United States is questionable. For instance consumer and investor confidence is very important therefore false data is often put out, or real data is manipulated before it's put on the public. Hey, I am not an anti-government guy, and I realize we need the bureaucracy for some things, but I am wise enough to realize that humans run the government, and there is a lot of power involved, humans like to retain and get more of that power. We can expect that.

And we can expect that folks purporting information under fake screen names, pen names to also be less-than-trustworthy, that's all I am saying here. Look, it's not just the government, corporations do it too as they attempt to put a good spin on their quarterly earnings, balance sheet, move assets around, or give forward looking projections.

Even when we look at the data from the FED's Beige Sheet we could say that most all of that is hearsay, because generally the FED Governors of the various districts do not indicate exactly which of their clients, customers, or friends in industry gave them which pieces of information. Thus we don't know what we can trust, and we thus must assume we can't trust any of it, unless we can identify the source prior to its inclusion in the research, report, or mined data query.

This is nothing new, it's the same for all information, whether we read it in the newspaper or our intelligence industry learns of new details. Check sources and if we don't check the sources in advance, the correct thing to do is to increase the probability that the information is indeed incorrect, and/or the margin for error at some point ends up going hyperbolic on you, thus, you need to throw the whole thing out, but then I ask why collect it in the first place.

Ah hell, this is all just philosophy on the accuracy of data mining. Grab yourself a cup of coffee, think about it and email your comments and questions.



Source: http://ezinearticles.com/?How-Can-We-Ensure-the-Accuracy-of-Data-Mining---While-Anonymizing-the-Data?&id=4868548

Tuesday, 3 September 2013

Data Entry - Why Are Data Entry Services So Cheap?

Data entry has become a requirement these days for a lot of company that need to have their physical data input in order to make digital files out of them. This is turn makes the documents more manageable and accessible and saves a lot of time and space whilst improving efficiency. So how can companies that offer data entry charge such a low rate for the services?

Well it can all depend on the type of data that is being input. For example, if the data that needs making digital is already from a document which has been typed and printed or typed using a typewriter then sophisticated software can be used in order to extract the data quickly and simply. This means that because the process is automated, this saves a lot of time and man power. Often this software will have been developed in-house or especially for the company themselves.

If the data is handwritten then it will need to be input manually, and this is where things can get a little more expensive. But amazingly, not by much. Data entry has become increasingly cheap over the last few years and the main reason for this is outsourcing. A lot of companies, whether admitting it or not, may be outsourcing the work to the east where the work can be done at that same level or quality for significantly less. A lot of companies are fine with admitting this, but others are not so sure, primarily because this may put people off the service. However in our experience, the data capture staff that we have used have excellent English skills and offer work done to a similar level to that of an English-language based company.

If you're not sure you like the idea of this and are looking at getting data entry or data capture completed, ask the company where they have their data captured from. Most companies will be honest and tell you, but it's usually fairly obvious by the rate that they charge for the data entry itself. Ask how long they have worked with the data capturing company for and also make sure to request a sample of their work and perhaps the data entry company will be willing to get a sample made especially for you. But make sure to look for companies which have secured the ISO 9001:2000 as this ensures that work is checked over by a third-party to ensure quality.

Steve Wright is marketing manager with Pearl Scan solutions a document scanning and data entry company from the UK. We offer top quality data entry services for our clients with a 98% accuracy rating. Ask us about our data entry staff if you'd like to know more and we'd be happy to tell you more.



Source: http://ezinearticles.com/?Data-Entry---Why-Are-Data-Entry-Services-So-Cheap?&id=6193944

Monday, 2 September 2013

Beneficial Data Collection Services

Internet is becoming the biggest source for information gathering. Varieties of search engines are available over the World Wide Web which helps in searching any kind of information easily and quickly. Every business needs relevant data for their decision making for which market research plays a crucial role. One of the services booming very fast is the data collection services. This data mining service helps in gathering relevant data which is hugely needed for your business or personal use.

Traditionally, data collection has been done manually which is not very feasible in case of bulk data requirement. Although people still use manual copying and pasting of data from Web pages or download a complete Web site which is shear wastage of time and effort. Instead, a more reliable and convenient method is automated data collection technique. There is a web scraping techniques that crawls through thousands of web pages for the specified topic and simultaneously incorporates this information into a database, XML file, CSV file, or other custom format for future reference. Few of the most commonly used web data extraction processes are websites which provide you information about the competitor's pricing and featured data; spider is a government portal that helps in extracting the names of citizens for an investigation; websites which have variety of downloadable images.

Aside, there is a more sophisticated method of automated data collection service. Here, you can easily scrape the web site information on daily basis automatically. This method greatly helps you in discovering the latest market trends, customer behavior and the future trends. Few of the major examples of automated data collection solutions are price monitoring information; collection of data of various financial institutions on a daily basis; verification of different reports on a constant basis and use them for taking better and progressive business decisions.

While using these service make sure you use the right procedure. Like when you are retrieving data download it in a spreadsheet so that the analysts can do the comparison and analysis properly. This will also help in getting accurate results in a faster and more refined manner.



Source: http://ezinearticles.com/?Beneficial-Data-Collection-Services&id=5879822